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Abstract: In this paper we study the boundary observability estimate of time 
discrete Schrödinger equations in a bounded domain. By means of a time 
discrete version of the classical multiplier technique, we prove the uniform 
observability inequality of the solutions in an appropriate filtered space in 
which the high frequency components have been filtered. In this way, the  
well-known boundary observability property of the Schödinger equation can be 
reproduced as the limit, as ,h → 0  of the observability of the time discrete 
one. Better than the existing result in Ervedoza et al. (2008), our alterative 
proof shows the rigorous relationship between the filtering parameter and the 
optimal observation time T. Moreover, the latter one tends to zero as the time 
scale tends to zero. Finally, the optimality of the order of the filtering parameter 
is also established for lower dimensional case. 
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1 Introduction 

Let Ω  be an open bounded set of d  with boundary = ∂ΩΓ  of class 3.C  We consider 
a partition ( )0 1,Γ Γ  of Γ  given by 

{ }00 : ( ) ( ) 0 ,= = ∈ ⋅ >x x m x xνΓ Γ Γ  (1) 

{ }1 : ( ) ( ) 0 ,= ∈ ⋅ ≤x m x xνΓ Γ  (2) 
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where 0x  is a fixed point of 0, ( ) ,d m x x x= −  and ( )xν  is the unit normal vector to Γ  

at ∈x Γ  pointing towards the exterior of ,Ω  and ‘·’ denotes the scalar product in .d  
Let us consider the following homogeneous Schrödinger equation 

0

0 in (0, )
0 on = (0, )

(0) in .

+ Δ = = Ω×⎧
⎪ = ∑ ×⎨
⎪ = Ω⎩

ti Q T

T

ϕ ϕ
ϕ
ϕ ϕ

Γ  (3) 

Here ( , )x tϕ ϕ=  is the state and is a complex valued function. In Machtyngier (1994), it 
is shown that for arbitrary time interval (0, ),T  system (3) is exact observable on the 
boundary 0.Γ  More precisely, for any 0,T >  there exists a constant ( ) 0C C T= >  such 

that for any initial data 1
0 0 ( ),Hϕ ∈ Ω  the following inequality holds for the solution  

of (3): 

1
0 0

2
2

( ) 0
.Ω

∂
≤

∂∫ ∫
T

H
C d

ϕ
ϕ σ

νΓ
 (4) 

The above observability estimate has a wide range of applications on controllability, 
stabilisation, inverse problem, etc. There is also an intensive literature providing 
observability results implicitly for Schrödinger equations by various methods including 
microlocal analysis (Bardos et al., 1992; Lebeau, 1992), multipliers (Machtyngier, 1994), 
Carleman estimates (Baudouin and Puel, 2002; Lasiecka and Triggiani, 1992), etc. 

Note that there is another class of conditions on 0( )ΩΓ  guaranteeing (4), which is  
so-called geometric control condition (GCC, for short) introduced in Bardos et al. (1992). 
It asserts that all rays of geometric optics in Ω  intersect the subset of the boundary 0Γ  
in a uniform time 1. Indeed, this is the case when one introduces the microlocal analysis 
technique (Bardos et al., 1992; Lebeau, 1992). 

Our goal in this paper is to develop a theory allowing to get results for time discrete 
systems as a direct consequence of those corresponding to the time-continuous  
ones. Especially, we focus on the multiplier conditions of the boundary, i.e., 0Γ  satisfies 
(1). 

Let us first present a natural discretisation of continuous system (3). For any 0,h >  
we denote by kϕ  the approximation of the solution ϕ  of system (3) at time kt kh=  for 
any 0,...,=k K  with / .K T h=  We consider the following implicit midpoint time 
discretisation of system (3): 

1 1

0

0,  in ,  0,..., 1
2

0,                                        on ,  0,...,
 is given,                                 in .

+ +⎧ − +⎛ ⎞+ Δ = Ω = −⎪ ⎜ ⎟
⎝ ⎠⎪⎪ = =⎨

⎪ Ω⎪
⎪⎩

k k k k

k

i k K
h

k K

ϕ ϕ ϕ ϕ

ϕ
ϕ

Γ  (5) 

Note that (5) is a discrete version of (3). 
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As we will show in Lemma 6.1, the conservation law for the time discrete  
equation (3) holds, i.e., ( ) ( )2 2

22
0k L L

ϕ ϕ
Ω Ω

=  and ( ) ( )1 1
0 0

22
0k H H

ϕ ϕ
Ω Ω

=  for any 

,..., .k K= 0  Consequently the scheme under consideration is stable and its convergence 
(in the classical sense of numerical analysis) is guaranteed in an appropriate functional 
setting. 

The uniform exact observability problem for system (5) is formulate similarly to the 
continuous one: To find a positive constant ,C > 0  independent of h, such that the 
solution kϕ  of system (5) satisfy 

( )1
0 0

21
2 1

0
0

.
2

−
+

Ω
=

+∂ ⎛ ⎞≤ ⎜ ⎟∂ ⎝ ⎠
∑∫
K

k k
H

k

Ch d
ϕ ϕ

ϕ σ
νΓ

 (6) 

for all initial data in an appropriate class. 
Clearly, (6) is a discrete version of (4). Accordingly, system (5) is said to be 

observable if there is a constant C  such that (6) holds. 
The first result of this paper is of negative nature. Indeed, as we shall see in  

Theorem 2.1, the observability inequality fails for system (5) if the initial data are taken 
in ( )1

0 .H Ω  Note that, from the proof of Theorem 2.1 below, one will see that this 
negative result is related to the fact that the number of time-steps is finite; while the space 
in which the solutions involve is infinite dimensional. Of course, one cannot expect to 
observe infinite number of information by means of finite number of observations. Note 
that the similar result holds for time discrete wave equation and the methodology of the 
proof there is the same as in our model (see Zhang et al., 2009 for more details). 

Accordingly, to obtain the uniform observability property (6) one needs to restrict the 
solutions of (5) by filtering the high frequency components. The filtering method has 
been applied successfully in the context of observability of time discrete conservative 
linear systems (Ervedoza et al., 2008), controllability of time discrete heat equations 
(Zheng, 2008) and space semi-discrete schemes for wave equations (Infante and Zuazua, 
1999; Zuazua, 1999, 2005). Indeed, the subject of observation of the time discrete 
Schrödinger equation under consideration is roughly stated in Ervedoza et al. (2008) as 
an application of an abstract model. However, due to the limitation of the techniques they 
applied, a very cursory result is stated and show the existence of some time 0,T >  with 
which (6) holds with suitable filtered initial data (Th. 4.2 of Ervedoza et al., 2008). The 
result is rough, without any detailed discussion on the optimality of the observable time 
T  and the order of the filtering parameter. In this paper, we not only develop a direct 
proof for solving this uniform observability problem by means of a discrete version of the 
classical multiplier approach, but also obtain a sharp observation time ,T  i.e., (6) holds 
for any 0.T >  It can be seen not as a complementarity but an improvement of the 
previous results in Ervedoza et al. (2008). 

The rest of the paper is organised as follows. In Section 2, we present the lack of the 
observability of system (6) without filtering. Section 3 is devoted to establish a 
fundamental identity by means of multipliers, which will play an important role in the 
sequel. The uniform observability result for (6) is presented in Section 4. In Section 5 we 
show the optimality of the filtering parameter in the uniform observability result. Finally 
we state some technical Lemmas as the complements of the previous proofs. 
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2 Lack of observability 

This section is devoted to prove the following negative observability result: 

Theorem 2.1: For any given 0h >  and any nonempty open subset 0Γ of ,Γ  system (5) is 

not observable with ( )1
0 0 .Hϕ ∈ Ω  

Proof: We emphasise that, in this proof, h  is fixed so that the system under consideration 
involves only a finite number of time-steps while it is a distributed parameter system 
(infinite-dimensional one) in space. This is precisely the main reason for the lack of 
observability property. 

Let 2
jμ  and jΦ  are eigenvalues and eigenfunctions of the Laplacian with Dirichlet 

boundary condition, i.e., 

2 , in

0, on .

⎧−Δ = Ω⎪
⎨

=⎪⎩

j j j

j

μΦ Φ

Φ Γ

/2 1
1Put .

− −
== ∑ j

dn n
j jf μ Φ  (7) 

(Recall that d  is the dimensions of Ω ). By Weyl’s formula (Guillemin, 1979), 
1/~ ( ) d

k C kμ Ω  as .k →∞  Therefore, 

( )1
0

2

1

, as ;
n

dn
jH

j

f nμ
−

Ω
=

= → ∞ →∞∑  (8) 

while, 1{ }n nf ≥  is bounded in ( )sH − Ω  for all 1.s > −  

It is obvious that ( ) ( )2 1
0

nf H H∈ Ω ∩ Ω  for any .n  We choose the initial data of (5) 

to be 0
n nfϕ =  and denote the corresponding solution by 0{ } .n K

k kϕ =  Note that 

1 ,...,n n
Kϕ ϕ are inductively determined by the following iterative elliptic systems 

1 1 , 0,... 1.
2 2+ ++ Δ = − Δ = −n n n n

k k k k
h h

i i k Kϕ ϕ ϕ ϕ  (9) 

By standard elliptic regularity theory, it is easy to see that 2 1
0( ) ( )n

k H Hϕ ∈ Ω ∩ Ω  for any 
.n∈  

One can also rewrite (9) as 

1
1 1

2 ( ) ( ), 0,... 1.n n n n
k k k k

i
k K

h
ϕ ϕ ϕ ϕ−

+ ++ = −Δ − = −  

Using the standard elliptic regularity theory, for any 2,τ ≤  it holds 

2 2

1 1

1 1( ) ( ) ( )
1 1

( ) ( ) .
H H H− −

− −

+ +Ω Ω Ω
= =

+ ≤ + ≤∑ ∑
K K

n n n n n
k k k k

k k

C h C h f
τ τ τ

ϕ ϕ ϕ ϕ  (10) 

In the second inequality we use the fact that 2 2( ) ( )
n n
k H H

fτ τϕ − −Ω Ω=  for any k. Hence, 

for any given 0h >  and 3 / 2 2,τ< <  using trace theorem, it follows from (10) that 
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2

21 1
21

1 ( )
1 1

2
( )

( )
2

( ) .−

− −
+

+ Ω
= =

Ω

⎛ ⎞+∂
≤ +⎜ ⎟⎜ ⎟∂ ⎝ ⎠

≤

∑ ∑∫
K Kn n

n nk k
k k H

k k

n
H

h d C h

C h f

τ

τ

ϕ ϕ
ϕ ϕ

νΓ
Γ

 (11) 

Now, recalling that 1{ }n nf ≥  is bounded in ( )sH − Ω  for all 1s > −  and 0 ,n nfϕ =  taking 
(8) and (11) into account, we obtain that 

1
0

2
( )

21
1

1

lim .

2

Ω

→∞ −
+

=

= ∞
⎛ ⎞+∂
⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑∫

n
H

n K n n
k k

k

f

h d
ϕ ϕ

νΓ
Γ

 (12) 

Thus, the observability inequality fails. Consequently, system (5) is not observable  
(even when 0 =Γ Γ ). 

3 Identity via multipliers 

In this section, we will establish an identity for the solution of the system (5) by means of 
the discrete multiplier techniques. As we shall see, it plays the crucial role in the proof of 
Theorem 4.1. 

We have the following Lemma: 

Lemma 3.1: We denote by ( , )k kq q x t=  where 2( , ) ( , ).dq x t C Q∈  For every solution of 
(5) with 0 ( ),Qϕ ∈D  the corresponding identity holds: 

( )

21
1

0

0 0 0

1
1

0
1

1 1

0
1

, 1

0 ,

1
2 2

1 Im ( )
2

1 Im
2

1 Re div
2 2 2

Re
2

−
+

=

⋅ − ⋅
Ω

−
+ ⋅

Ω
=
−

+ +⋅
Ω

=

−
+

Ω
=

+∂ ⎛ ⎞ ⋅⎜ ⎟∂ ⎝ ⎠

= ∇ ∇

−
+ ∇

+ +⎛ ⎞ ⎛ ⎞+ ∇ ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ∂ +∂ ∂⎛ ⎞+ ⎜ ⎜ ⎟⎜ ∂ ∂ ∂⎝ ⎠⎝

∑∫

∫

∑∫

∑∫

∑ ∑∫

K
k k

k
k

K K K

K
k k

k k
k

K
k k k k

x k
k

K
j k k k

i j ik i j

q q

h q d

dx

q q
h dx

h

h q dx

q
h

x x x

ϕ ϕ
ν σ

ν

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

Γ

1 .
2

+⎛ ⎞+ ⎞
⎜ ⎟⎟

⎠⎝ ⎠
k k dx

ϕ ϕ

 (13) 

Remark 3.1: Identity (13) is a time discrete analogue of the well-known identity for the 
Schrödinger equation (3) obtained by multipliers, which reads (see Machtyngier, 1994): 
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2

0

,

1 1 1( , ) Im ( ) Im ( )
2 2 2

1 Re ( (div ) ) Re .
2

∑ Ω

∂
∑ = ⋅∇ + ⋅∇

∂

∂⎛ ⎞∂ ∂
+ ∇ ⋅∇ + ⎜ ⎟∂ ∂ ∂ ⎠⎝

∫ ∫ ∫

∑∫ ∫

T
t

Q

j
x

Q Q i j ii j

q d q dx q dxdt

q
q dxdt dxdt

x x x

ϕ
ν ϕ ϕ ϕϕ

ν

ϕ ϕ
ϕ ϕ

 (14) 

Clearly, the major difference between (14) and (13) is that, ϕ  and tϕ  are replaced by 

1( ) / 2k kϕ ϕ+ +  and 1( ) / ,k k hϕ ϕ+ −  respectively, due to the time-discretisation. It is easy 
to see, formally, that 1( ) / 2k kϕ ϕ+ +  and 1( ) /k k hϕ ϕ+ −  tends to ϕ  and tϕ  as ,h → 0  
respectively. However, this convergence does not hold uniformly for all solutions. This 
induces the need of using filtering of the high frequencies to obtain observability 
inequalities, as we shall see in Lemma 4.1. 

Proof: The desired identity will be given by using the multiplier 

1 11 div .
2 2 2

k k k k
k x kq q

ϕ ϕ ϕ ϕ+ ++ +⎛ ⎞⋅∇ +⎜ ⎟
⎝ ⎠

 (15) 

Integrating on Ω  and summing k  from 1 to 1,K −  we have 

1
1 1

0

( ) .
2

K
k k k k

k

h i dx
h

ϕ ϕ ϕ ϕ−
+ +

Ω
=

⎤− +⎡ ⎛ ⎞+ Δ × =⎥⎜ ⎟⎢⎣ ⎝ ⎠⎦
∑∫ 15 0  (16) 

We denote by 

1
1 1

0
1

1 1

0
1

1 1

0
1

1 1

0

,
2

div ,
4

,
2 2

div .
2 4

−
+ +

Ω
=
−

+ +

Ω
=
−

+ +

Ω
=
−

+ +

Ω
=

− +⎛ ⎞= ⋅∇⎜ ⎟
⎝ ⎠

− +
=

+ +⎛ ⎞ ⎛ ⎞= Δ ⋅∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ +⎛ ⎞= Δ⎜ ⎟
⎝ ⎠

∑∫

∑∫

∑∫

∑∫

K
k k k k

k
k

K
k k k k

x k
k

K
k k k k

k
k

K
k k k k

x k
k

A h i q dx
h

B h i q dx
h

C h q dx

D h q dx

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 

Using integration by parts with respect to x  and recalling that kϕ = 0  on ,∂Ω  it is easy 
to show that 

1
1 1

0

.
2 2 2

K
k k k k

k
k

i A
B h q dx

h

ϕ ϕ ϕ ϕ−
+ +

Ω
=

− +⎛ ⎞ ⎛ ⎞= ∇ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∫  (17) 

On the other side, by deindexing the terms in the sum and with careful arrangement, we 
have the following identity on :A  
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[

]

1

1 1
0
1

1 1 1
0

1 1 1

1 1

0 0 0

1
1

1 1
0

1 1

( ) ( )
2 4

2( )
4

2 ( )
( ) (

( )
2

2

2

K

k k k k k
k

K

k k k k k k
k

k k k k

k k k k k

K K K

K
k k

k k
k

k k k
k

q q

A i
q dx

i
q q

q q

q dx

i
dx

q qi
h

h

q

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

−

⋅+ +
Ω

=
−

⋅ ⋅+ + +
Ω

=

⋅+ + +

⋅+ +

⋅ − ⋅
Ω

−
+ ⋅+ +

Ω
=

+ +⋅

= ∇ + ∇ +

= ∇ − ∇

− − ∇

− + ∇ −

= ∇ ∇

−⎛− ∇⎜
⎝

+ −
+ ∇

∑∫

∑∫

∫

∑∫
.k dx

h

ϕ ⎞
⎟
⎠

 (18) 

Combining (17) and (18), one arrives at 

1
1 1

0

0 0 0

1
1

1 1
0
1

1 1

0

1 1

2 2 2

( )
2

2

2 2

.
2

K
k k k k

k
k

K K K

K
k k

k k
k

K
k k k k

k
k

k k k k
k

q q

A i
A B h q dx

h

i
dx

q qi
h dx

h

i
h q

h

q dx
h

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

−
+ +

Ω
=

⋅ − ⋅
Ω

−
+ ⋅+ +

Ω
=
−

+ +⋅
Ω

=

+ +⋅

− +
+ = − ⋅

= ∇ ∇

−
− ∇

+ −⎛− ∇⎜
⎝

+ − ⎞+ ∇ ⎟
⎠

∑∫

∫

∑∫

∑∫

 (19) 

On the other side, we similarly compute 

21
1

0
1

, 1 1

0 ,

1
1 1

0

2

2 2

.
2 2

−
+

∂Ω
=

−
+ +

Ω
=

−
+ +

Ω
=

+∂ ⎛ ⎞= ⋅⎜ ⎟∂ ⎝ ⎠

⎡∂ ⎤+ +∂ ∂⎛ ⎞ ⎛ ⎞− ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎦⎣

+ +
− ∇ ⋅ Δ

∑∫

∑ ∑∫

∑∫

K
k k

k
k

K
j k k k k k

i j ik i j

K
k k k k

k
k

C h q d

q
h dxdt

x x x

h q dx

ϕ ϕ
ν σ

ν

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 (20) 

Moreover, 
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1
1 1

0
1

1 1

0

1 div
2 2 2

1 div .
2 2 2

−
+ +

Ω
=
−

+ +

Ω
=

+ +⎛ ⎞ ⎛ ⎞= − ∇ ⋅∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞− ∇ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∫

∑∫

K
k k k k

x k
k

K
k k k k

x k
k

D h q dx

h q dx

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
 (21) 

Using integration by parts on x, after some computations, (21) changes to 

21
1

0
1

1 1

0

1
2 2 2 2

1 div .
2 2 2

−
+

∂Ω
=
−

+ +

Ω
=

+∂ ⎛ ⎞= − ⋅ + +⎜ ⎟∂ ⎝ ⎠

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞− ∇ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∫

∑∫

K
k k

k
k

K
k k k k

x k
k

C C
D h q d

h q dx

ϕ ϕ
ν σ

ν

ϕ ϕ ϕ ϕ
 (22) 

Combining (19)–(22), taking their real parts, we arrive at (13). 

4 Uniform observability under filtering 

In this section, we will introduce the filtering method to get rid of the high frequencies 
involved in the propagation of the time discrete model. Follow this, we show a positive 
result claiming that (5) is exact observable uniformly on .h  

To begin with, we introduce the following filtering space in which the solutions 
involved in: 

2

1
0{ ( ) | ( ) ( ), } ( )},

<

= = ∈ ⊂ Ω∑
j

s j j
s

C g x g x b j x b H
μ

Φ  

where 2
jμ  and jΦ  are defined in (7). We claim that the solution of system (5) can be 

expressed by means of Fourier series. Indeed, we have 

Lemma 4.1: Assume 
1

.
∞

=

=∑ j j
j

aϕ Φ0  Then the corresponding solution of (5) with initial 

data ϕ0  has the form 

2

1

2exp( ) , arctan .
2

∞

=

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

∑ j
k j j j j

j

u h
a i kh with

h
ϕ λ λΦ  (23) 

Moreover, 
2

,
∞

≤

= ∈∑
j

j j s
s

a
μ

ϕ Φ0 C  it holds 

1
0

2
21

( )2
4 .

2 4 ( )
+

ΩΩ

+⎛ ⎞∇ ≥⎜ ⎟ +⎝ ⎠∫ k k
H

dx
sh

ϕ ϕ
ϕ0  (24) 
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Remark 4.1: Note that (24) induces the major difference when one considers the 
observability rather than other classical ones, i.e., convergence of the solution, stability, 
etc. More precisely, most of the classical properties concern one single solution, but 
observability concerns a ‘uniform’ inequality for a class of solutions. For any specified 
solution, the left hand side of (24) is an approximation of the right hand side, as time step 
h  tends to zero. However, when 1

0 ( ),Hϕ ∈ Ω0  (24) shows that it will no longer be true 
when the solutions containing more and more high frequencies. The critical case is 
arrived if sh  is a constant, where s is the largest eigenvalues containing in the system. It 
is also the crucial point for testifying the optimal order of the filtering parameter, as we 
will see later. 

Proof: It can be done by simple computations. 

Now we establish uniform observability estimates for system (5) (with respect to time h ) 
after filtering the spurious high frequency components: 

Theorem 4.1: Let 0Γ  satisfy (1). Let T > 0 and K  be a positive integer. Let /h T K=  
and min(2 / ,1).= dα  For any δ > 0,  there exist 1 2, , 0,T C Cδ >  independent of ,h  such 
that for the solutions of (5), 

1
0

21
21

1 0 ( )
0 2

−
+

Ω
=

+∂ ⎛ ⎞ ≤⎜ ⎟∂ ⎝ ⎠
∑∫
K

k k
H

k

h d C
ϕ ϕ

ϕ
νΓ

Γ  (25) 

and 

1
0 0

21
2 1

0 2 0( )
0 2

−
+

Ω
=

+∂ ⎛ ⎞≤ ⎜ ⎟∂ ⎝ ⎠
∑∫
K

k k
H

k

C h d
ϕ ϕ

ϕ
νΓ

Γ  (26) 

hold for all ,  > >T T hδ 0  and 0 / .∈
hαδϕ C  

Remark 4.2: Note that (26) is a time discrete version of the continuous observability 
estimate. Consequently, since 2C  is a constant independent of h  and /hαδC  tends to 

1
0 ( )H Ω  as h  tends to zero, Theorem 4.1 can recover the observability property (4) for 

the continuous system (3). 

Remark 4.3: Note that one can deduce that uniform observability holds for any time  
T > 0. In fact, the relations between Tδ  and δ  (see (28) and (47)) tells us that Tδ  tends 
to zero as δ  vanishes. Hence, for any ,T > 0  there exists a sufficiently small δ  such that 
the uniform observability (26) holds for any 0 / .∈

hαδϕ C  

Remark 4.4: Note that the order of the filtering parameter is optimal as 1, 2.d =  Recall 
that min(2 / ,1),= dα  we have 1=α  as 1, 2d =  and 2 /= dα  as 2.d >  On the other 
hand, as we will see later, Theorem 5.1 will show that the counterexample appears when 
α  is bigger than 1. Combining these two facts we can arrive the optimal filtering order 1 
as 1, 2.d =  Due to the technical limitation, it is still an open problem whether 2 /= dα  is 
optimal or not. 
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Proof: We first prove (25). We choose 2( ) ( , )dkq q x C= = Ω  such that q ν=  on Γ   
(see Lions, 1988 for the construction of this vector field), and we obtain 

( )2 2 2 2

2,
2 2

1,
2

21
1

0
2 22 2

1 0 0( ) ( ) ( ) ( ) ( )

1
1 1

2 ( )
( ) ( )0

21
1

3 ( )
( )0

1
2 2

2 2

.
2

∞

∞

−
+

=

∞ Ω Ω Ω Ω Ω

−
+ +

Ω
Ω Ω=

−
+

Ω
Ω=

+∂ ⎛ ⎞ ⋅⎜ ⎟∂ ⎝ ⎠

≤ + ∇ + + ∇

+ +⎛ ⎞+ ∇⎜ ⎟
⎝ ⎠

+⎛ ⎞+ ∇⎜ ⎟
⎝ ⎠

∑∫

∑

∑

K
k k

k

K KL L L L L

K
k k k k

W
L Lk

K
k k

W
Lk

h q d

k q

k q h

k q h

ϕ ϕ
ν

ν

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

Γ
Γ

 (27) 

As we shall see in Lemma 6.1, the 2L -norms of kϕ  and kϕ∇  are conserved for any .k  
Taking (45) into account, for any ,h > 0  there exists a constant 1 ,C > 0  independent of 

,h  such that 

1
0

21
21

1 0 0( )
0

, ( ).
2

−
+

Ω
=

+∂ ⎛ ⎞ ≤ ∀ ∈ Ω⎜ ⎟∂ ⎝ ⎠
∑∫
K

k k
H

k

h d C
ϕ ϕ

ϕ ϕ
νΓ

Γ D  

Since ( )ΩD  is dense in 1
0 ( ),H Ω  the estimate (25) holds for every solution of (3.1) with 

initial data 1
0 0 ( ).Hϕ ∈ Ω  

Now we prove (26). 

Step 1 We first prove the following inequality: 

1 2
0 0

21
2 21

0 0 02 ( ) ( )
0

4 .
2 24

−
+

Ω Ω
=

+∂ ⎛ ⎞⎛ ⎞− ≤ +⎜ ⎟ ⎜ ⎟∂+⎝ ⎠ ⎝ ⎠
∑∫
K

k k
H L

k

T h
d Cε

ϕ ϕ
ε ϕ ϕ

νδ Γ
Γ  (28) 

Recalling the identity (13), setting 0( )kq m x x x= = −  and 0kf =  for any ,k  we get 

0

21
1

0
21

1
0

0

1
2 2

1 Im ( ) .
2 2

−
+

=

−
+⋅ ⋅

Ω Ω
−

+∂ ⎛ ⎞ ⋅⎜ ⎟∂ ⎝ ⎠

+⎛ ⎞= ∇ − ∇ + ∇⎜ ⎟
⎝ ⎠

∑∫

∑∫ ∫

K
k k

k

K
k k

K K
k

h m d

m m dx h dx

ϕ ϕ
ν

ν

ϕ ϕ
ϕ ϕ ϕ ϕ

Γ
Γ

 (29) 

Furthermore, let ε > 0  sufficiently small, we get 

2 10
0

2 2
0 0 0( ) ( )

1 Im ( ) .
2

⋅ ⋅
Ω ΩΩ

∇ − ∇ + ≤ +∫ K K L H
m m dx Cϕ ϕ ϕ ϕ ε ϕ ε ϕ  (30) 

Thus, recalling Lemma 4.1, combining (29) and (30), we arrive at (28). Note that ε has to 

be chosen such that the constant on the left hand side of (28) is positive, i.e., 2
4 .

4
<

+
T

ε
δ
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Step 2 We now prove the following estimate, which plays the key role for reducing 
(28) to our desired inequality (26): There exists ,K > 0  independent of h  and 

0ϕ  such that 

2
0

21

0 0( )
0

.
−

Ω
=

∂
≤

∂∑∫
K

k
L

k

Kh d
ϕ

ϕ
νΓ

Γ  (31) 

We argue by contradiction. 
First, we prove that K  is not depending on 0.ϕ  For an / ,∈

hαδϕ0 C  if (31) is not 

satisfied for any ,K > 0  there exists a sequence { }0
nϕ  of initial data of (5) such that 

2
/

0 0 ( )
1, i.e., 1

Ω
= = ∀ ∈

h

n n

L
n

αδ

ϕ ϕ
C

 (32) 

and 

0

21

0

0   as  .
−

=

∂
→ → +∞

∂∑∫
K

k

k

h d n
ϕ
νΓ

Γ0  (33) 

Note that in (33) { }nkϕ  denotes the corresponding solutions of (5) with initial data 0 .nϕ  

Since /hαδC  is a finite dimensional subspace of 1
0 ( ),H Ω  from (28) we deduce that 

{ }nϕ0  is bounded in 1
0 ( ).H Ω  By extracting a subsequence (that we will still note by 

{ }0 )nϕ  we will have 

{ }0 0
nϕ ϕ→  weakly in 1

0 ( ),H Ω  

which implies 

{ }0 0
nϕ ϕ→ strongly in 2 ( ).ΩL  

From (32) we deduce 

20 ( ) 1.
L

ϕ
Ω

=  (34) 

On the other hand, (33) implies 

0on .
∂

=
∂

n
kϕ
ν

Γ0  

Since / ,∈k hαδϕ C  from Lemma 6.2 we get .kϕ ≡ 0  This is in contradiction with (34). 

This means that K  in (31) is independent of .ϕ0  
Using the same argument as above, it is easy to show that K  is also independent of 

.h  
Indeed, the above argument holds true for any .h > 0  More precisely, if K  blows up 

when h  tends to zero, we have 



   

 

   

   
 

   

   

 

   

    Boundary observability of time discrete Schrödinger equations 139    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

2

/

0

2
( )

21

0
0

lim sup .Ω
−→ ∈

=

= ∞
∂
∂∑∫h

L

Kh
k

k

h dαδ
ϕ

ϕ

ϕ
νΓ

Γ0

0

0 C
 (35) 

Consequently, for any 0,K >  there exists 2
/ ( )∈ Ω
h
Lαδϕ ∩0 C  and 0>h  such that 

0

21

0
0

,
−

=

∂
≤

∂∑∫
K

k

k
h d

ϕ
ε

νΓ
Γ  

where ε→ 0  as .K →∞  Hence, we can choose a sequence { }0
nϕ  of the initial data of 

(5) such that it satisfies (32) and (33). Using the same argument above, remind that (28) 
holds for any ,h > 0  the same contradiction comes out. This means that K  is 
independent of h  too. 

Combining these two facts the proof of inequality (31) is complete. 
Note that compared to the continuous level, it is necessary to show that K  is a 

constant independent of both the initial state ϕ0  and the time step .h  The contradiction 
method here still works due to the fact that (28) holds uniformly not only for any 

2
/ ( )∈ Ω
h
Lαδϕ ∩0 C  but for any h > 0  too, which is provided by the appropriate filtering 

technique. 

Step 3 Now we derive (26) by means of (28) and (31). Assume 20 /
.

≤
=∑

j
j jh
aαμ δ

ϕ Φ  

Let 

2
0

/

exp( / 2) cos( / 2) .
≤

= −∑
j

j j j j
h

a i h h
αμ δ

ψ λ λ Φ  

It is obvious that 0 0 / .∈
hαδψ C  Consequently, (28) holds by replacing kϕ  by .kψ  

Meanwhile, using (23), it is easy to show that its corresponding solution has the form 

2

1

/

exp( / 2) cos( / 2)exp( ) .
2

+

≤

+
= − − =∑

j

k k
k j j j j j

h

a i h h i kh
αμ δ

ϕ ϕ
ψ λ λ λ Φ  

Moreover, taking (31) into account, it holds 

2
0

0

21
2

( )
0

21
1

0

.
2

−

Ω
=

−
+

=

∂
≤

∂

+∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

∑∫

∑∫

K
k

L
k

K
k k

k

Kh d

Kh d

ψ
ψ

ν

ϕ ϕ
ν

Γ

Γ

Γ

Γ

0 0

0

 (36) 

On the other side, since 2 /≤j hμ δ  and recalling (23), we compute 
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2

2

2

2

2 22
( )

/

2 2
2 2 ( )

/

cos( / 2)

4 4 .
4 4

Ω
≤

Ω
≤

=

≥ =
+ +

∑

∑
j

j

j jL
h

j L
h

a h

a

α

α

μ δ

μ δ

ψ λ

ϕ
δ δ

0

0

 (37) 

Due to the fact that kψ  satisfies (28), combining (36) and (37), we conclude (26). 

5 Optimality of the order of filtering parameter 

In this section we will discuss the optimality of the filtering mechanism introduced in 
Theorem 4.1. We have the following Theorem: 

Theorem 5.1: Assume that *Γ  is any nonempty open set of .Γ  Then for any given 1,β >  
it follows that 

1
0

*

2
0 ( )

21
1

0

lim sup .

2
−

Ω

−→ ∈
+

=

= ∞
+∂ ⎛ ⎞

⎜ ⎟∂ ⎝ ⎠∑∫
h

h

h

H

Kh
k k

k

h d
βϕ

ϕ

ϕ ϕ
νΓ

Γ
0

0

*

C
 (38) 

Remark 5.1: Note that ,−h α  the order of filtering parameter ,h  is optimal when 3.d <  In 
fact, min(2 / ,1) 1= =dα  as 3.d <  However, it is still an open problem whether it is 
sharp in the case 3.d ≥  One of the possibility to solve this problem is to establish a  
time-discrete Carleman estimate for the time-discrete system (5) and show its 
corresponding unique continuation property. 

Proof: Recall that 1
1 0{ } ( )∞
= ⊂ Ωj j HΦ  denotes the orthonormal basis of 2 ( )L Ω  constituted 

by the eigenvectors of the Dirichlet Laplacian and { }2
1j j

μ
≥

 the corresponding 

eigenvalues. Since 2
jμ → +∞  as ,→∞j  one can choose a ( )j j h=0 0  so that 

2/ 2 .jh hβ βμ− −≤ ≤
0

 In view of the fact that 1,β >  this leads to 

2 , asj h hμ →∞ →
0

0.  (39) 

Further, choose 

0 0
0

1 .=h j
j

ϕ
μ

Φ  (40) 

One deduces that 0
h

h βϕ −∈C  and 
1
0

0 ( )
1.h

H
ϕ

Ω
=  Noting the special choice of initial data 

in (40), by Lemma 4.1, the corresponding solution { } 0,...,=k k K
ϕ  of (5) is given by 
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0 0
0

1 exp( ) , 0,..., ,= − =j j
j

k i kh k Kϕ λ
μ

Φ  (41) 

where 0jλ  is defined by (23). Using (23), it follows 

0

2 2
0

2cos .
2 4 ( )
j

j

h

h

λ

μ

⎛ ⎞
=⎜ ⎟

⎝ ⎠ +
 (42) 

Via (41) and (42), one has 

*

0 0

*

21

2 2 22/2 /2
0 0 0

2
0 0

2

cos ( / 2)
.

2

+

−

⎛ ⎞∂ +
⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∂ ∂+
≤ ≤

∂ ∂

∫

∫ ∫
j j

k k

i h i h
j j j

j j

d

he e
d d

λ λ

ϕ ϕ
ν

λ

μ ν νμ

Γ

Γ Γ

Γ

Φ Φ
Γ Γ

*

*

 (43) 

From (7.8) of Zhang et al. (2009) we know that 

2
0 2

0.
∂

≤
∂∫ j

jd Cμ
νΓ

Φ
Γ  (44) 

Finally, combining (43) and (44), noting (39), (42) and 
1
0

0 ( )
1,h

H
ϕ

Ω
=  it follows 

( )1
0

0

*

2 220 0( )
21 1

1

4
sup as 0,

4

2
−

Ω

− +∈

=

+
≥ → ∞ →

⎛ ⎞∂ +
⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑∫
h

h

h
jH

K k k

k

h
h

C
h d

βϕ

ϕ μ

ϕ ϕ
νΓ

Γ*
C

 

which gives (38). 

6 Further comments and open problems 

1 In this paper we dealt with the time discrete implicit-midpoint schemes (5). In fact, 
uniform observability holds true for any norm-conserved schemes under suitable 
filtering conditions of the initial data (see Ervedoza et al., 2008), such as Newmark 
method, Gauss method, etc. One could expect the same relationship between the 
filtering parameter and the optimal observable time T (it is not clear in Ervedoza et 
al., 2008). It is the key improvement of this paper. i.e., recovers the optimal time in 
the continuous level. It is interesting to do further works as an exercise on these 
much more complicated systems. The main heavy work is the complexity of the 
computations on multiplier techniques acting on much more complicated time 
discrete schemes. 
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2 As it is well-known in controllability theory, uniform observability inequalities 
imply uniform controllability results as well. For instance, similarly as the time 
discrete wave equation analysed in Zhang et al. (2009), combining the duality 
arguments and the results of this paper, one can immediately deduce the uniform 
(with respect to h > 0 ) controllability of projections on the class of filtered space 

/hαδC  for arbitrary T > 0.  

3 Another interesting further open problem is whether the fully discrete schemes have 
the uniform observability properties. For instance, in one dimension, one can 
replaces the continuous operator xxd  by the central schemes 

2
1 1( 2 ) / ( ) ,j j ju xμ μ+ −+ − Δ  where jμ  indicates the approximations of u  at .x j x= Δ  

Obviously, the complexity increases as the dimension increases. We will discuss this 
problem elsewhere. 
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Appendix Some Lemmas 

Lemma 6.1: The solutions of the time discrete Schrödinger equation (5) satisfy 

2 2

2 2

22
0( ) ( )

22
0( ) ( )

, 0,..., ,

, 0,..., .

k L L

k L L

k K

k K

ϕ ϕ

ϕ ϕ

Ω Ω

Ω Ω

= ∀ =

∇ = ∇ ∀ =
 (45) 

Proof: Identity (45), which is an analogue of the classic results of the Schrödinger 
equation, can be proved directly by using the following formulas: 

1
1 1

0
1

1 1

0

( ) ( ) ,
2 2

( ) ( ) .

−
+ +

Ω
=

−
+ +

Ω
=

⎛ ⎞+ +
× − × =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− −

× − × =⎜ ⎟⎜ ⎟
⎝ ⎠

∑∫

∑∫

K
k k k k

k

K
k k k k

k

h dx

h dx
h h

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

5 5 0

5 5 0

 

Lemma 6.2: Let ,  / .> =T K T h0  Then there exists ( , )Tδ δ= Ω > 0,  such that for any 

/∈
hαδϕ0 C  with min(2 / ,1),= dα  the solution of (5) has the property 

, on , ,..., , , in , ,..., .
∂

= ∀ = ⇒ ≡ Ω ∀ =
∂
k

kk K k K
ϕ

ϕ
ν

Γ00 0 0 0  

Remark 6.1: Note that Lemma 6.2 is a partial unique continuation property of system (5). 
The existence of a counterexample seems to be easily given by taking a nontrivial 
solution of system (46). However, the explicit forms of eigenvalues and eigenfunctions 
are hard to be caught in general case, saying, for an optional .Ω  Whether there exists an 
general datum violating the unique continuation property is still unknown. 

Proof: By Weyl’s formula 2 2/~ ( ) ,dj C jμ Ω  For any 0δ >  there exists an integer J  such 
that the initial data /∈

hαδϕ0 C  can be written as the form 

, ,
1 1

,
= =
∑∑

jnJ

j l j l
j l

aϕ Φ0  

where , , 1,...,=j l jl nΦ  are eigenfunctions corresponding to the same eigenvalue .lλ  By 
Lemma 4.1, the solution of (5) is 

, ,
1 1

exp( ) .
= =

= −∑∑
jnJ

k j l j j l
j l

a i khϕ λ Φ  

Taking 0
∂

=
∂
kϕ
ν

into account, it holds 
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, ,
1 1

, ,
1 1

, ,
1 1

0,

exp( ) 0,

. . . . . .

exp( ) 0.

= =

= =

= =

⎧
⎪ ∂ =
⎪
⎪
⎪
⎪ − ∂ =
⎨
⎪
⎪
⎪
⎪ − ∂ =⎪
⎩

∑∑

∑ ∑

∑ ∑

j

j

j

nJ

j l j l
j l

nJ

j j l j l
j l

nJ

j j l j l
j l

a

i h a

i Kh a

ν

ν

ν

λ

λ

Φ

Φ

Φ

 (46) 

Or, equivalently, 

0,MA =  

with 

0

1 2 1

1 2

1 1 ... 1
exp( ) exp( ) ... exp( )

,
... ... ... ... ...

exp( ) exp( ) ... exp( )

J

J K

M

i h i h i h M
M

i Kh i Kh i Kh M

λ λ λ

λ λ λ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − − ⎢ ⎥⎢ ⎥=
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

− − − ⎢ ⎥⎣ ⎦ ⎣ ⎦
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1

2

1, 1,
1

1

22, 2,
1

, ,
1

.
...

......

=

=

=

⎡ ⎤
⎢ ⎥∂
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

∂⎢ ⎥
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∑

∑

∑
J

n

l l
l

n

l l
l

J
n

J l J l
l

a

A

Aa
A

A

a

ν

ν

ν

Φ

Φ

Φ

 

Obviously, 0jA ≡  if and only if 1J K≤ +  since M  is a ( 1)K J+ ×  Van der Monde 

matrix. More precisely, recalling that 
22 arctan
2
j

j

h

h

μ
λ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 in (23), it is easy to verify that 

i jλ λ≠  when ,≠i j  and consequently exp( ) exp( )i ji h i hλ λ≠  (due to the fact that 
( , )∈ −jhλ π π  for any j ). If 1,J K< +  the first J  equations of (46) indicates that 

0;jA ≡  If 1,J K= +  det ( ) 0M =  and 0MA =  only has trivial solution, i.e., 0.jA ≡  
Combining these two facts we arrive at 1.≤ +J K  

Meanwhile, to provide 1,≤ +J K  it is sufficient that min(2 / ,1)= dα  and to make an 

appropriate choice of .δ  In fact, since 2 2/~ ( ) / ,Ω ≤dJ C J hαμ δ  to let 1,J K≤ +  it is 
sufficient to choose δ  such that the following inequality is fulfilled: 
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2/
2/( )( 1) ( ) 1⎛ ⎞≤ Ω + = Ω +⎜ ⎟

⎝ ⎠

d
d T

C K C
hhα

δ  (47) 

due to the fact that 

2/

2 2/

( )( 1)
1.

~ ( )

⎫≤ Ω + ⎪⎪⇒ ≤ +⎬
⎪Ω ≤
⎪⎭

d

d
J

C K
h J K
C J

h

α

α

δ

δ
μ

 (48) 

Clearly, there always exists a positive constant δ  independent of ,h  such that (47) holds 
by the assumption min(2 / ,1).= dα  

On the other hand, since ,j lΦ  satisfies 2
, ,Δ = −j l J j lμΦ Φ  and , ,i jΦ Φ  are linear 

independent when ,i j≠  it holds 

, , ,
1

, [1, ].
=

= ∂ = ⇒ = ∀ ∈∑
jn

j j l j l j l j
l

A a a l nνΦ 0 0  

Combining this fact and that 0jA ≡  for 1,..., ,j J=  we complete the proof. 


